On choosing appropriate hypothesis tests

Vong Jun Yi (vongjy.github.io)

Variances

- Population variance: The variance of the entire population, denoted by σ^2
- (Biased) Sample variance: The variance of a particular sample from a population, denoted by S^2
- Unbiased estimator for population variance: An estimate of population variance when it is unknown, denoted by s^2 or $\hat{\sigma^2}$.
- Bessel's correction The variances obey the following relationship:

$$s^2=rac{n}{n-1}S^2$$

• Standard error refers to $\frac{s}{\sqrt{n}}$.

Means

- Population mean: denoted by μ .
- Sample mean: usually denoted by \overline{x} .
- \overline{x} is an unbiased estimator for μ .

Parameters and tests for confidence intervals

• Suppose a significance level of $\alpha \in (0,1)$, then $p:=1-rac{lpha}{2}$,

Case	Test	Confidence interval
Population mean with known population variance	<i>z</i> -test	$\overline{x}\pm z_prac{\sigma}{\sqrt{n}}$
Population mean using large sample (unknown σ^2)	<i>z</i> -test	$\overline{x}\pm z_prac{s}{\sqrt{n}}$
Population mean using small sample (unknown σ^2)	<i>t</i> -test	$\overline{x}\pm t_{p,n-1}rac{s}{\sqrt{n}}$
Population proportion, \hat{p} (large sample)	<i>z</i> -test	$\hat{p}\pm z_p\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$
Difference in population means using small sample	<i>t</i> -test	$(\overline{x}-\overline{y})\pm t_{p,n_1+n_2-2}s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}$
Difference in population means using large sample	<i>z</i> -test	$(\overline{x}-\overline{y})\pm t_{p,n_1+n_2-2}\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$

Case	Test	Confidence interval
Difference in population means with matched pairs	<i>t</i> -test	$\overline{d} \pm t_{p,n-1} rac{s_d}{\sqrt{n}}$

Hypothesis testing (Difference in means)

Tests	Assumptions
Two-sample <i>t</i> -test	 Underlying distributions are normal. Populations are independent. Population variance of the two populations is the same (but may be unknown).
Two-sample <i>z</i> -test (Normal distribution)	 Underlying distributions are normal. Large sample sizes. Populations are independent. Population variance of the two populations is the same (but may be unknown).
Paired sample <i>t</i> -test	 Differences are normally distributed. Population variance of the two populations is the same (but may be unknown). Data are matched pairs (repeated measures design).

Two sample *t*-test

• If n_1 and n_2 are small (< 30), and the two populations are normally distributed with an **unknown common variance**, then the test statistic *t* has the distribution

$$(\overline{X}-\overline{Y})\sim t_{n_1+n_2-2}\left(\mu_x-\mu_y,s_p^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)
ight)$$

and

$$t=rac{(\overline{x}-\overline{y})-(\mu_x-\mu_y)}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}.$$

- If the sample sizes are too small to allow us to use s_x^2 and s_y^2 are estimators, we need to pool these variances (combine them).
- The pooled estimate of the population variance is

$$s_p^2 = rac{\sum (x-\overline{x})^2 + \sum (y-\overline{y})^2}{n_x+n_y+2} \ = rac{(n_x-1)s_x^2 + (n_y-1)s_y^2}{n_x+n_y+2}.$$

Two sample *z*-test (Normal distribution)

• If n_1 and n_2 are large (≥ 30), then the distribution of $(\overline{X} - \overline{Y})$ is given by

$$(\overline{X}-\overline{Y})\sim N\left(\mu_x-\mu_y,rac{s_1^2}{n_1}+rac{s_2^2}{n_2}
ight)$$

and test statistic is

$$z=rac{\overline{x}-\overline{y}-(\mu_x-\mu_y)}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}.$$

• If the population variance is known, the test statistic is

$$Z=rac{(\overline{x}-\overline{y})-(\mu_x-\mu_y)}{\sqrt{rac{\sigma_x^2}{n_x}+rac{\sigma_y^2}{n_y}}}\sim N(0,1).$$

Paired sample *t***-test**

• The test statistic t has the distribution $D \sim N\left(\mu_d, \frac{s_d^2}{n}\right)$ and $t = rac{\overline{d}-k}{s_d/\sqrt{n}}.$