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Variances

Means

Parameters and tests for confidence intervals

Case Test Confidence interval
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Population variance: The variance of the entire population, denoted by σ2

(Biased) Sample variance: The variance of a particular sample from a population, denoted by S 2

Unbiased estimator for population variance: An estimate of population variance when it is
unknown, denoted by s2 or σ̂2.
Bessel's correction - The variances obey the following relationship:

s2 =
n

n − 1
S 2

Standard error refers to s

√n
.

Population mean: denoted by μ.
Sample mean: usually denoted by x.–

x is an unbiased estimator for μ.–

Suppose a significance level of α ∈ (0, 1), then p := 1 −
α
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Case Test Confidence interval

Difference in population means 
 with matched pairs
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d ± tp,n−1
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√n

Hypothesis testing (Difference in means)

Tests Assumptions

Two-sample t-test - Underlying distributions are normal.
- Populations are independent.
- Population variance of the two populations is the same 
 (but may be unknown).

Two-sample z-test 
 (Normal distribution)

- Underlying distributions are normal.
- Large sample sizes.
- Populations are independent.
- Population variance of the two populations is the same 
 (but may be unknown).

Paired sample t-test - Differences are normally distributed.
- Population variance of the two populations is the same 
 (but may be unknown).
- Data are matched pairs (repeated measures design).

Two sample t-test
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Two sample z-test (Normal distribution)

If n1 and n2 are small (< 30), and the two populations are normally distributed with an unknown
common variance, then the test statistic t has the distribution

––

–

If the sample sizes are too small to allow us to use s2
x and s2

y are estimators, we need to pool
these variances (combine them).
The pooled estimate of the population variance is
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          and test statistic is
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∼ N(0, 1).

Paired sample t-test

If n1 and n2 are large (≥ 30), then the distribution of (X − Y ) is given by––

––

–

If the population variance is known, the test statistic is

–

The test statistic t has the distribution D ∼ N (μd,
s2
d

n
) and t =

–
d − k
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