

Monty Hall dilemma

[x,v]EM,0===f(x,y)]

 $\int_{a}^{b} f(g_{x}) \cdot q'(x) dx = \int_{q(a)}^{g(b)} f(t) dt = [F(t)]_{g(a)}^{g(1)}$

You're in a game show (Let's Make a Deal). The host (Monty Hall) leads you to wall with 3 closed doors. Behind one of the doors is the car of your dreams, and behind each of the other two is a goat. The 3 doors all have even chances of hiding the car.

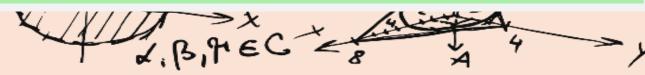
 $e^{2} - \chi_{y}^{2} = e : A[0:e:1]$

A=[1;0;3]

X,={2

×t

 $R_0 =$



 $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}) = (U,V)$

(A))

1.K2

4)

)-y;)²

jAZj

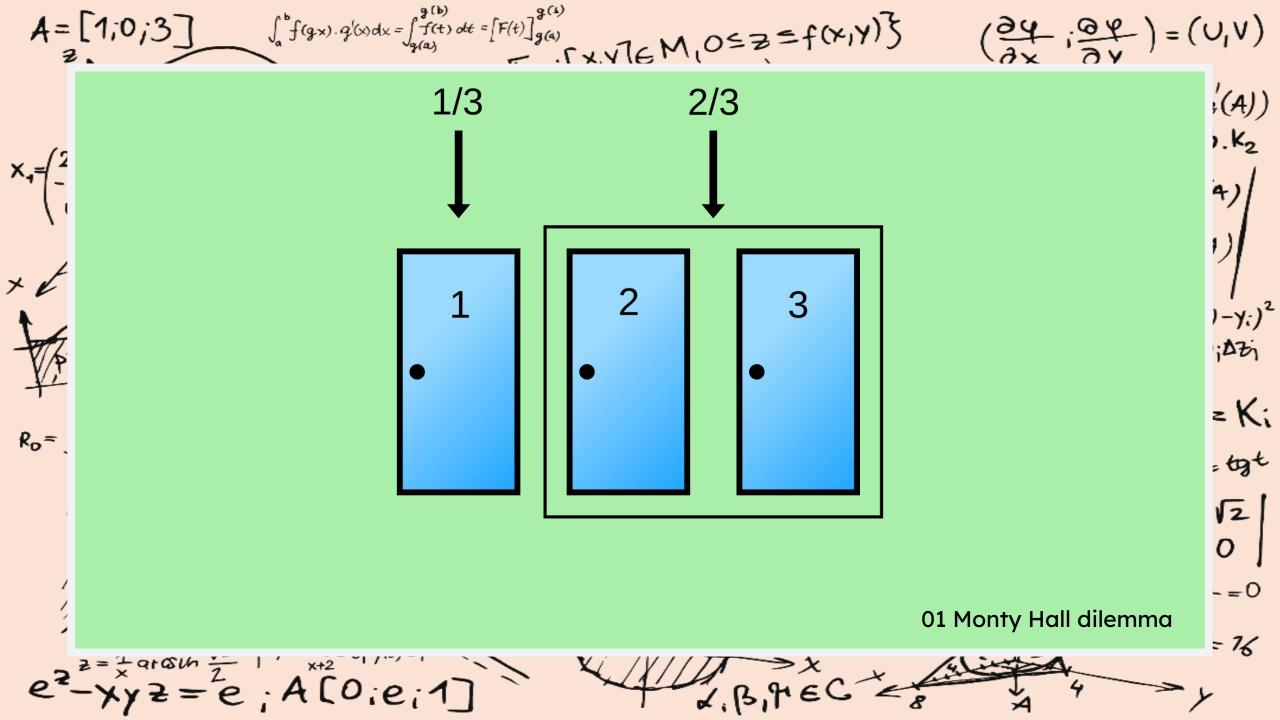
= Ki

= tgt

12 0

-=0

= 76



Monty Hall dilemma

 $f_{X,Y} = M_{10} = z = f(x, y)^{2}$

L'BITECZE

 $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}) = (U,V)$

(A))

1.K2

4)

1)

 $(-\gamma_i)^2$

jAZj

= Ki

= tgt

12

-=0

= 76

 $\int_{a}^{b} f(g_{X}) \cdot q^{l}(x) dx = \int_{q(a)}^{q(b)} f(t) dt = \left[F(t)\right]_{q(a)}^{q(1)}$

e²-xyz=e: A[0:e:1]

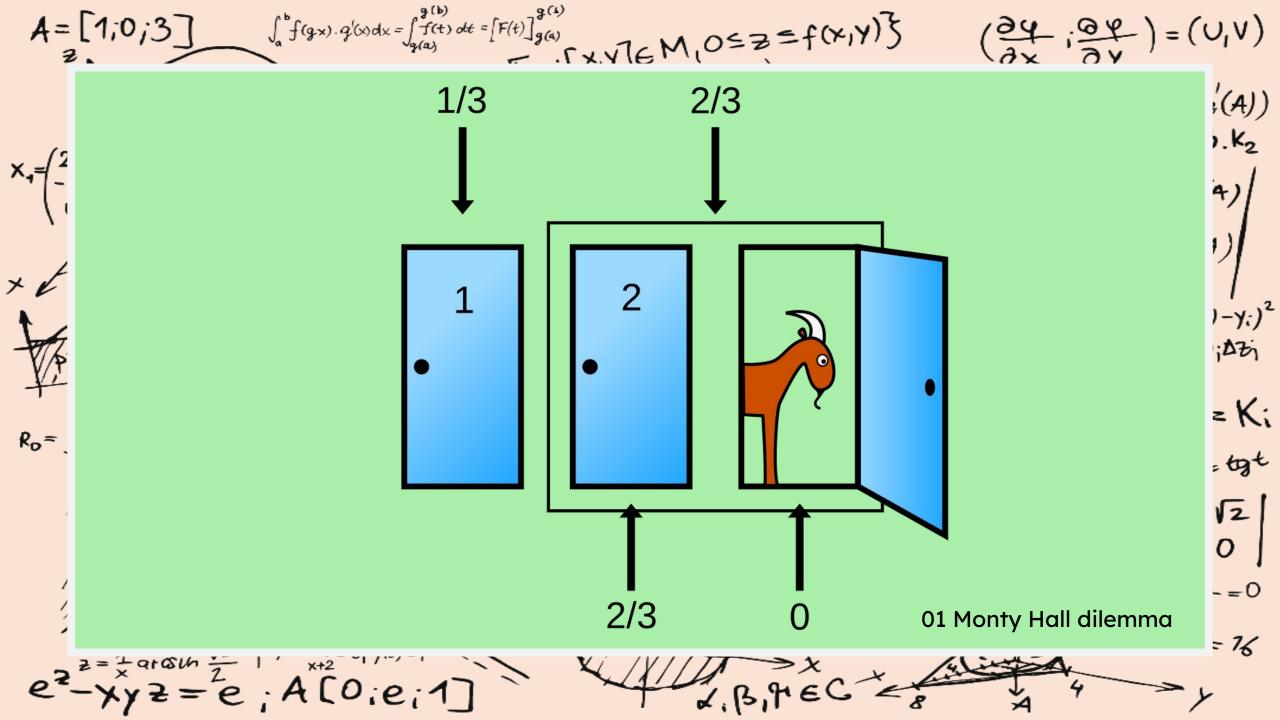
A=[1;0;3]

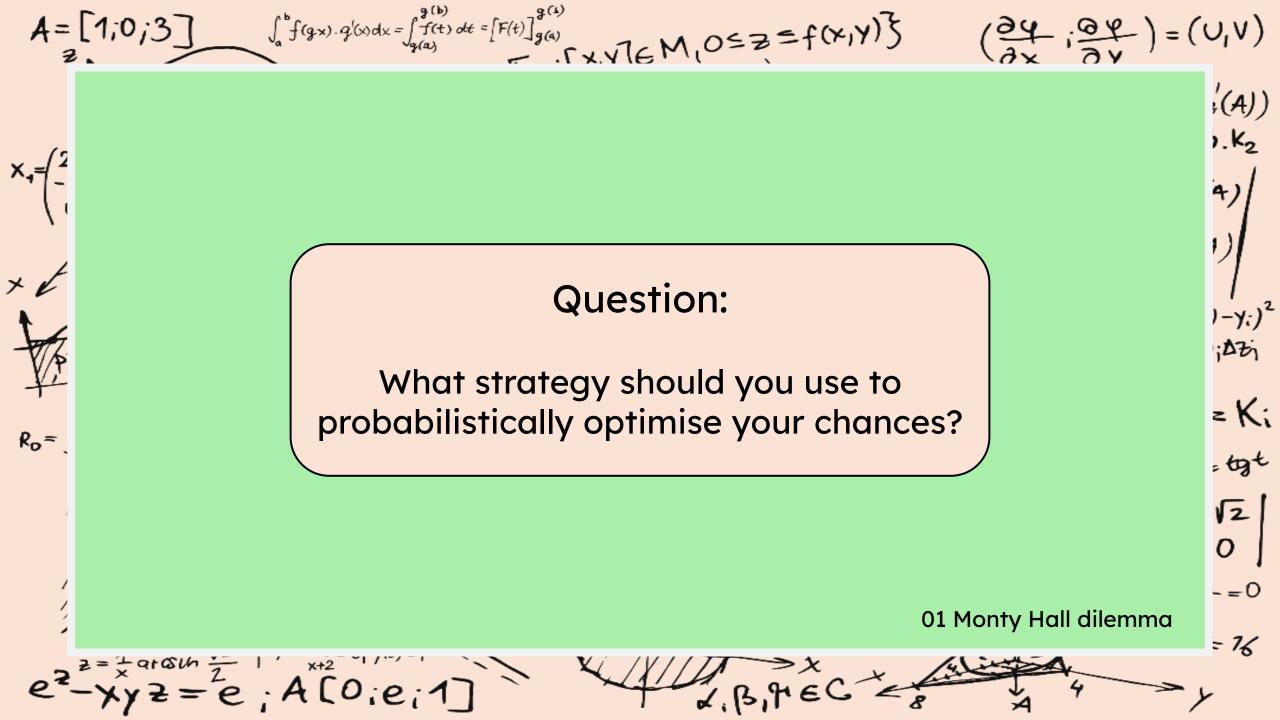
X,={2

×t

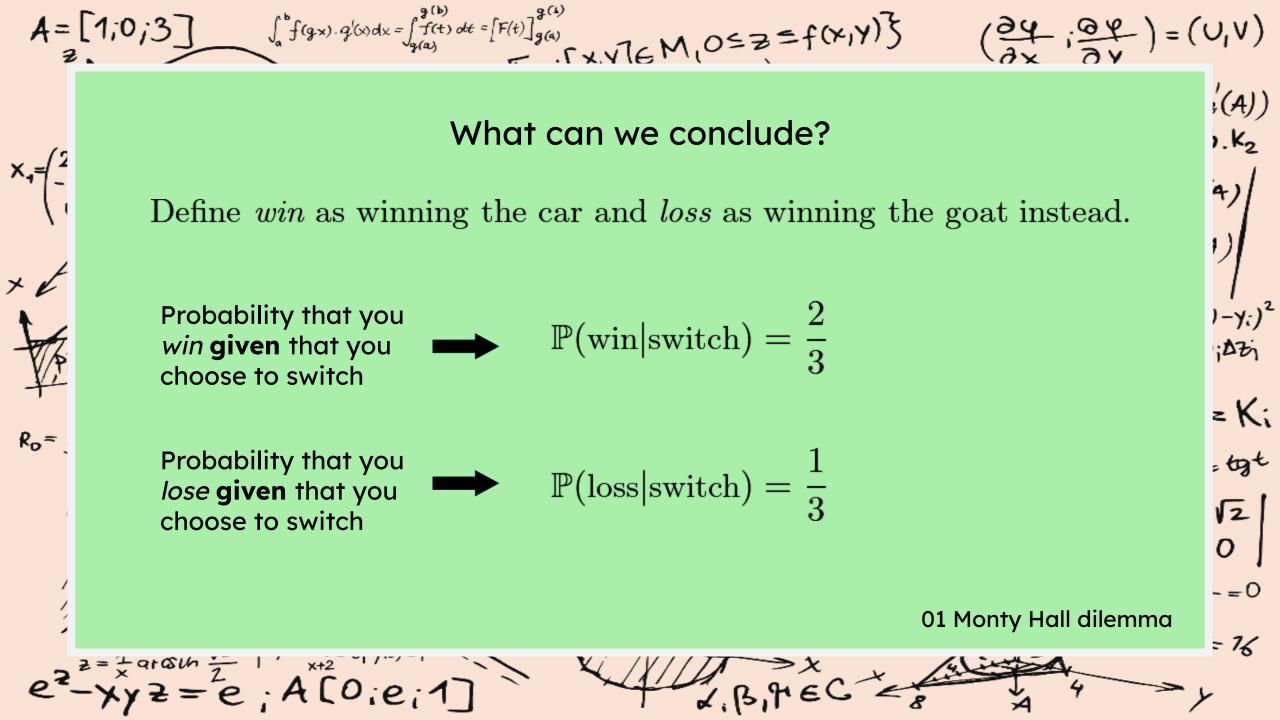
 $R_o =$

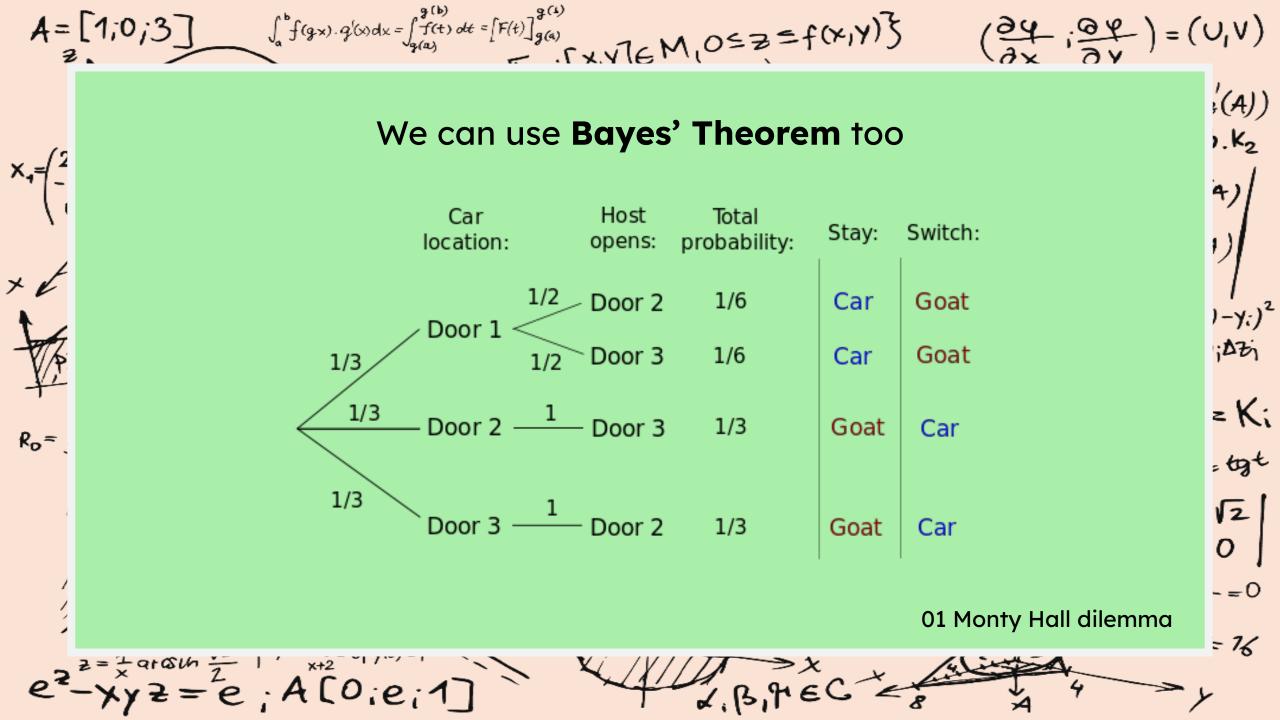
The host knows precisely what is behind each of the three doors, explains how the game will work. First, you will choose a door without opening it, knowing that after you have done so, the host will open one of the 2 remaining doors to reveal a goat. When this has been done, you will be given the choice of switching doors or not.

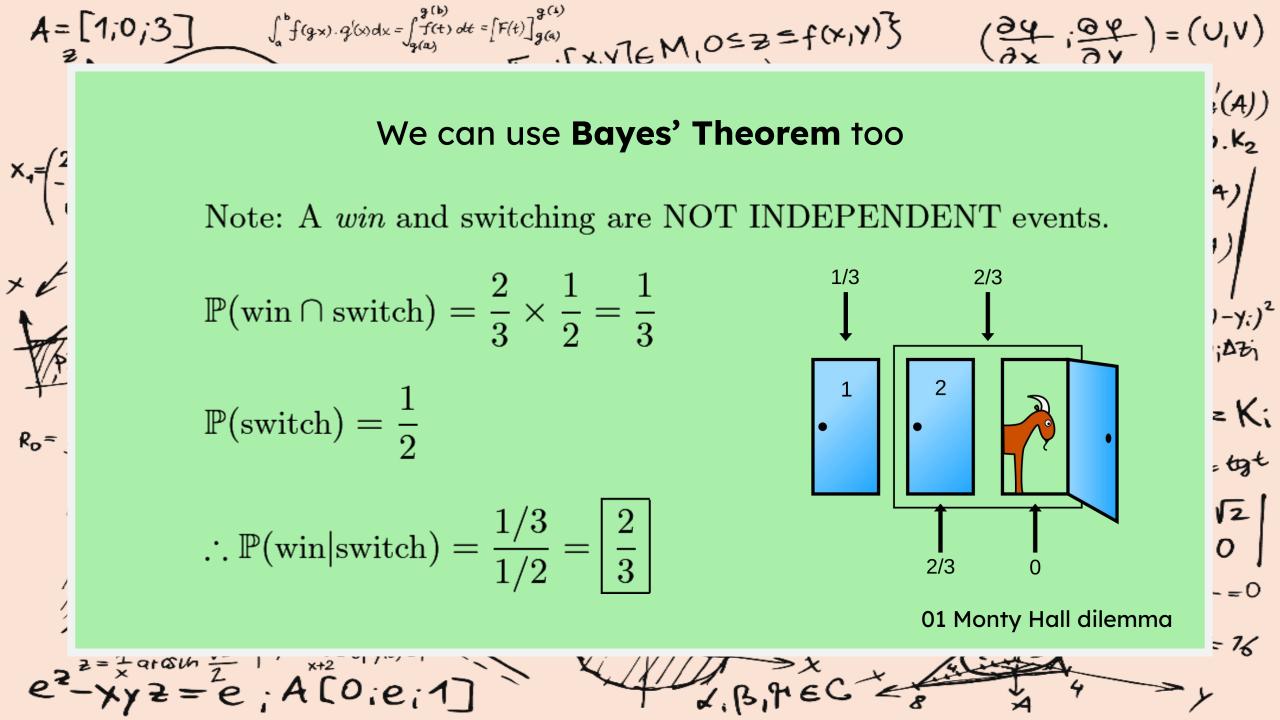


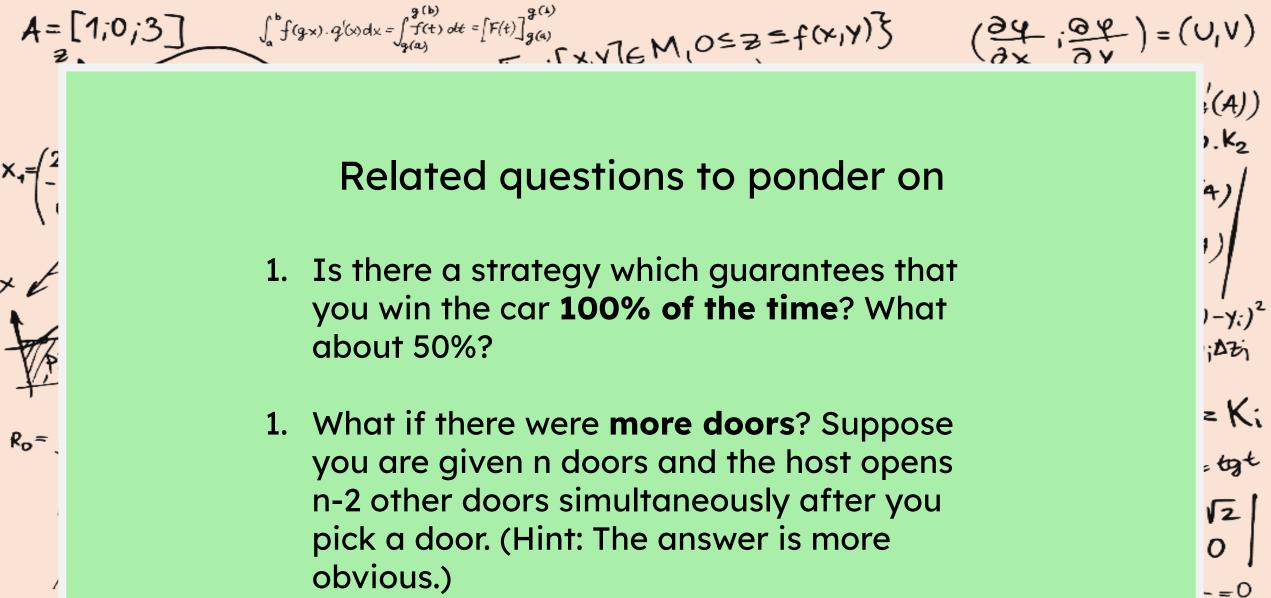


A= ₹	[1;0	;3]î±	g(b) f(g.x).q'(x)dx =∫f(t) q(a)	$olt = \left[F(t)\right]_{g(a)}^{g(4)}$	VIEM, OSZEF(X	$(\frac{29}{\sqrt{6}}; \frac{29}{\sqrt{6}})$	= (U,V)
							(A)) 1.K2
$X_{1} = \begin{pmatrix} 2 \\ - \\ 1 \end{pmatrix}$	Draw a table! If you choose Door 1:						4)
×t		Datiant	Dation	Data in d		Description of the later of the	2
Va		Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the door offered	1 1-y;)² 1;∆Zi
4		Goat	Goat	Car	Wins goat	Wins car	= Ki
R₀= .		Goat	Car	Goat	Wins goat	Wins car	₅ tgt
		Car	Goat	Goat	Wins car	Wins goat	12
,							0 -=0
1.1						01 Monty Hall dilemmo	
$e^{2} - \chi \gamma 2 = e$; A[0;e;1]							







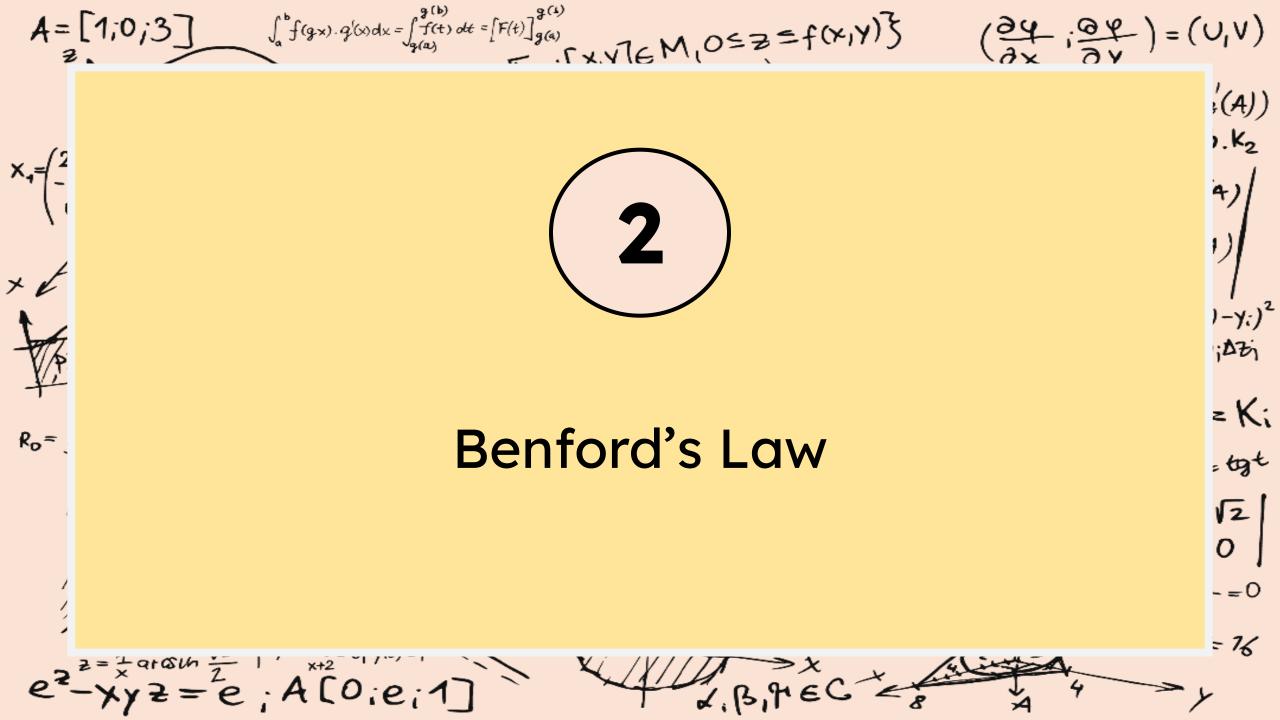


L.B. FEC

 $e^{2} - \chi y = e \cdot A[0:e:1]$

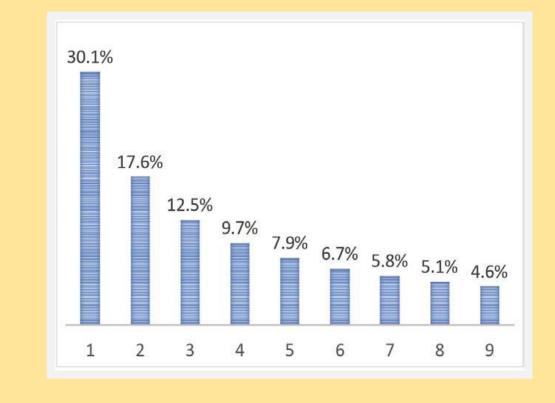
01 Monty Hall dilemma

= 76



Ro=

What is Benford's Law?



 $e^{2} - \chi y^{2} = e^{-\chi y^{2}} A[0:e:1]$

A law which describes the frequency distribution of leading digits of numbers in a naturally-occuring dataset.

Examples of datasets used: populations, area of rivers, pressure, birth/death rate and anything else!

L.B.FEC

(A))

1.K2

4)

)-y;)²

jAZj

= Ki

= tgt

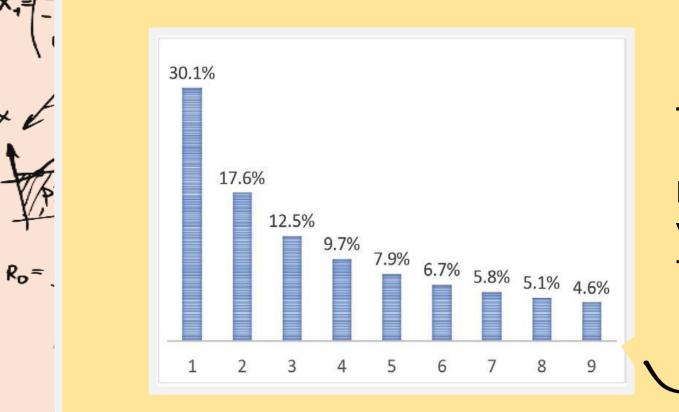
1Z

-=0

= 76

0

⁰² Benford's Law



-xyz=e;A[0:e:1]

Therefore, the law states that:

(A))

1.K2

)-y;)²

jAZj

= Ki

= tgt

1Z

-=0

= 76

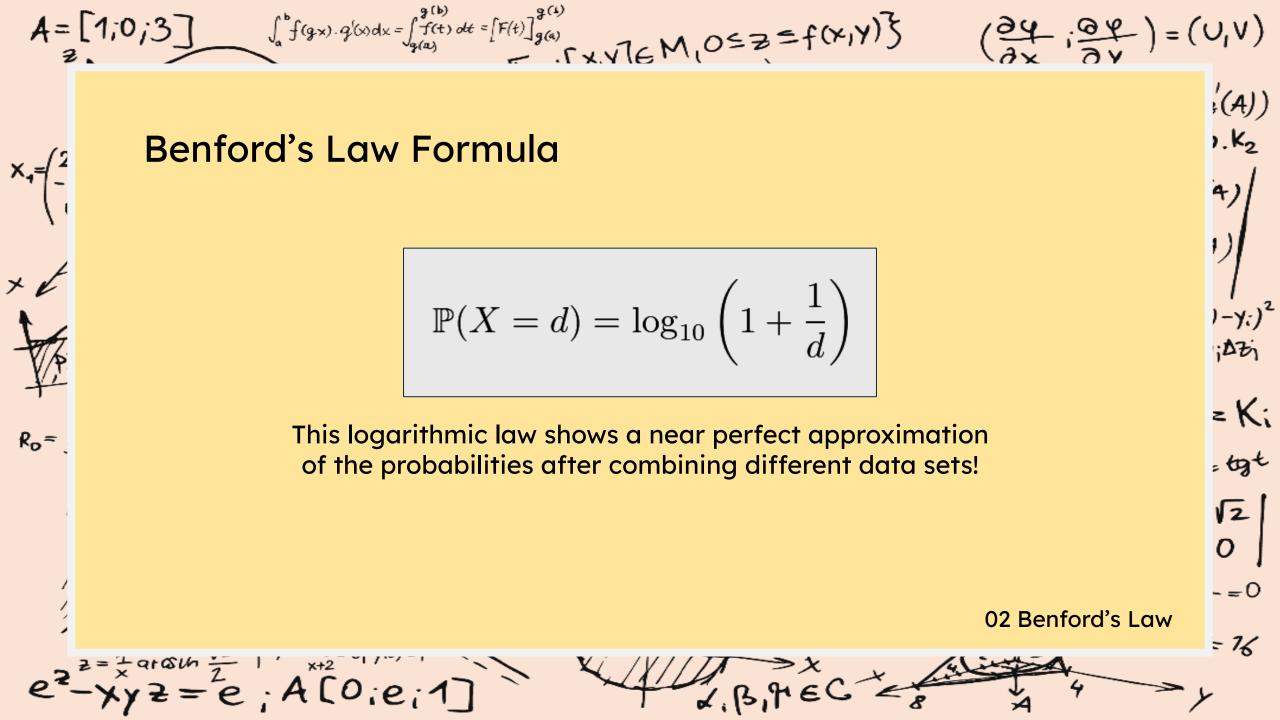
0

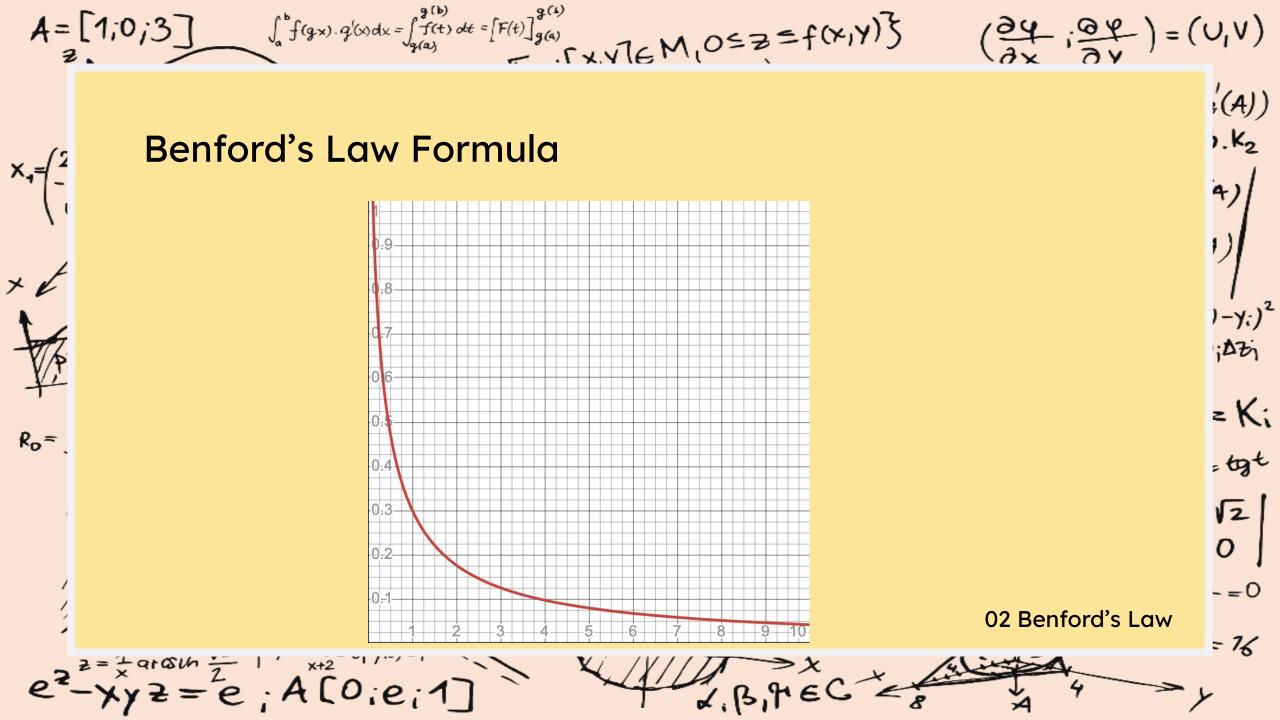
02 Benford's Law

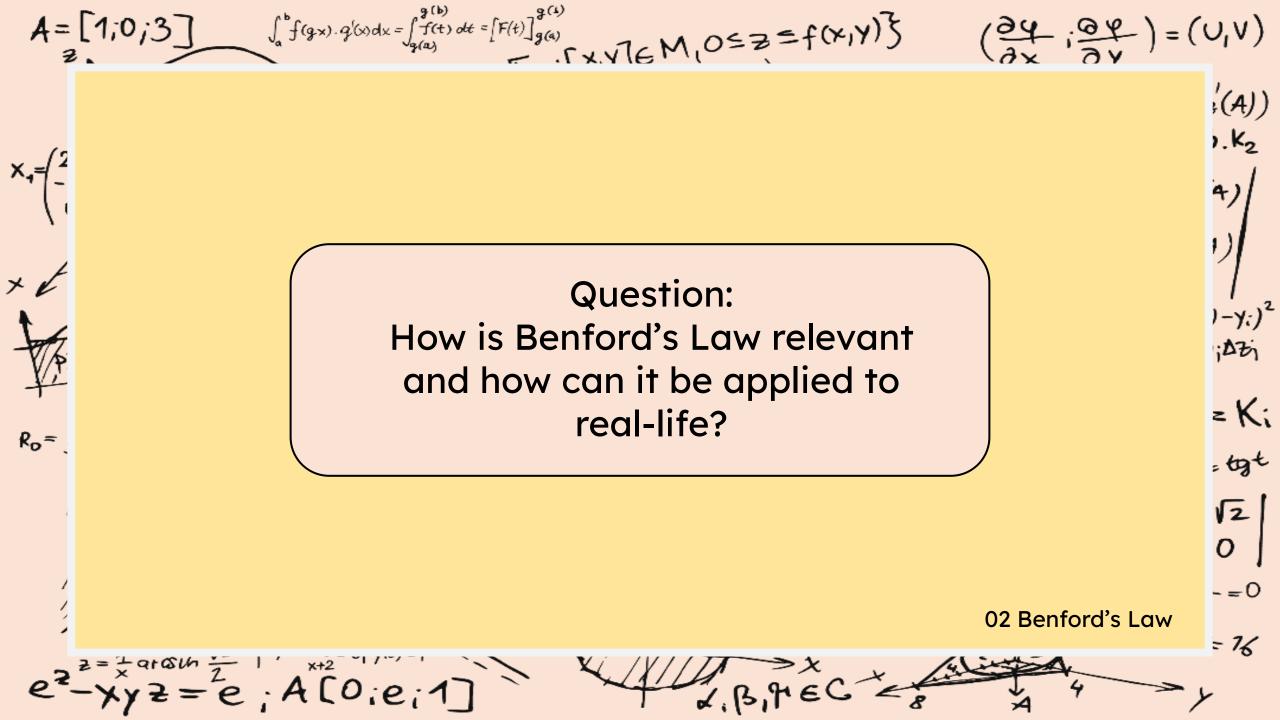
4)

Leading digits with smaller values occur much more frequently than larger values.

L.B.PEC-







Fraud Detection

[X,V]EM,05==f(X,Y)]

 $(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}) = (U, V)$

(A))

1.K2

4)

)-y;)²

jAZj

= Ki

= tgt

12 0

-=0

= 76

 $\int_{a}^{b} f(g_{x}) \cdot q'(x) dx = \int_{q(a)}^{q(b)} f(t) dt = \left[F(t)\right]_{q(a)}^{q(1)}$

e²-xyz=e; A[0:e:1]

A = [1;0;3]

X,={2

 $R_o =$

- Fraudulent data often do not follow Benford's Law as it is difficult to manually construct distributions which follow the law.
 - For example: Fraudsters might change \$1000 transactions into \$900 ones (which obviously will skew the distribution).

L.B.PEC

Multiplication Game

[x,v]EM,0===f(x,y)}

L.B. PEL

 $\left(\frac{\partial \varphi}{\partial x};\frac{\partial \varphi}{\partial y}\right) = (U,V)$

1000?

9999

(A))

1.K2

)-y;)²

jAZj

= Ki

= tgt

V2

0

-=0

= 76

Instructions:

 $-\chi_{y} = e A[0:e:1]$

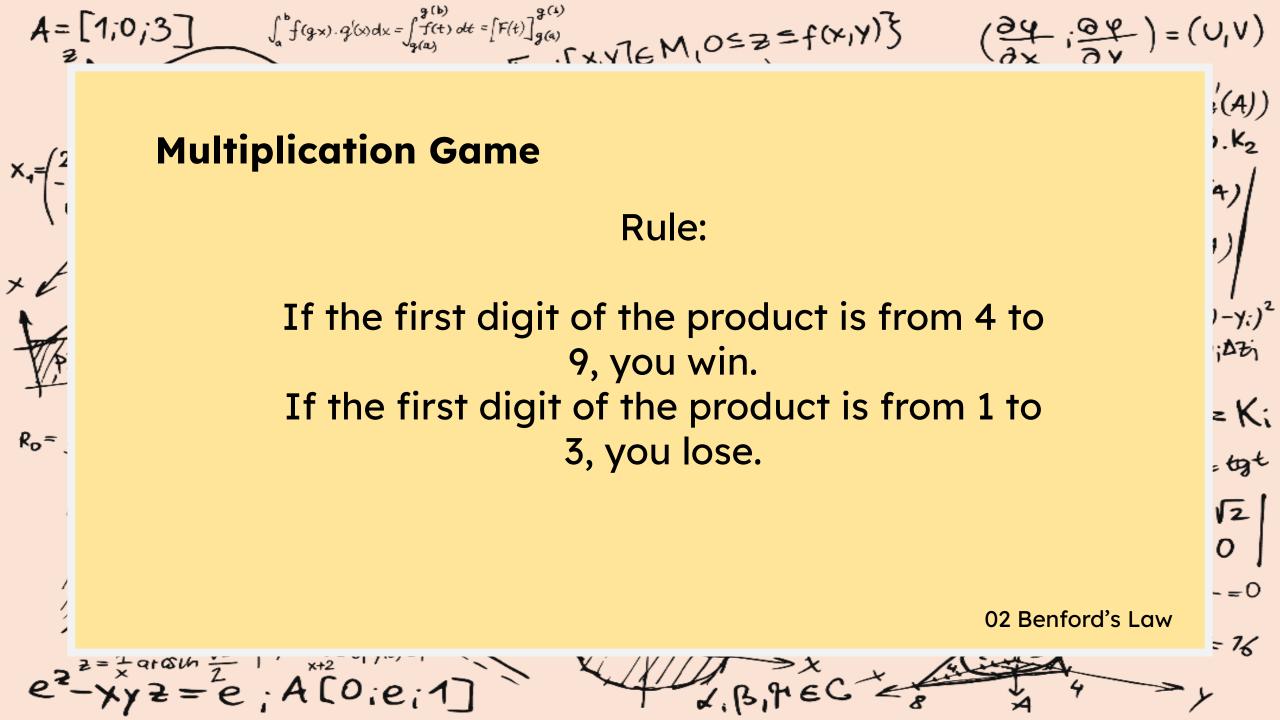
 $\int_{a}^{b} f(g_{x}) \cdot q'(x) dx = \int_{q(a)}^{q(b)} f(t) dt = \left[F(t)\right]_{q(a)}^{q(4)}$

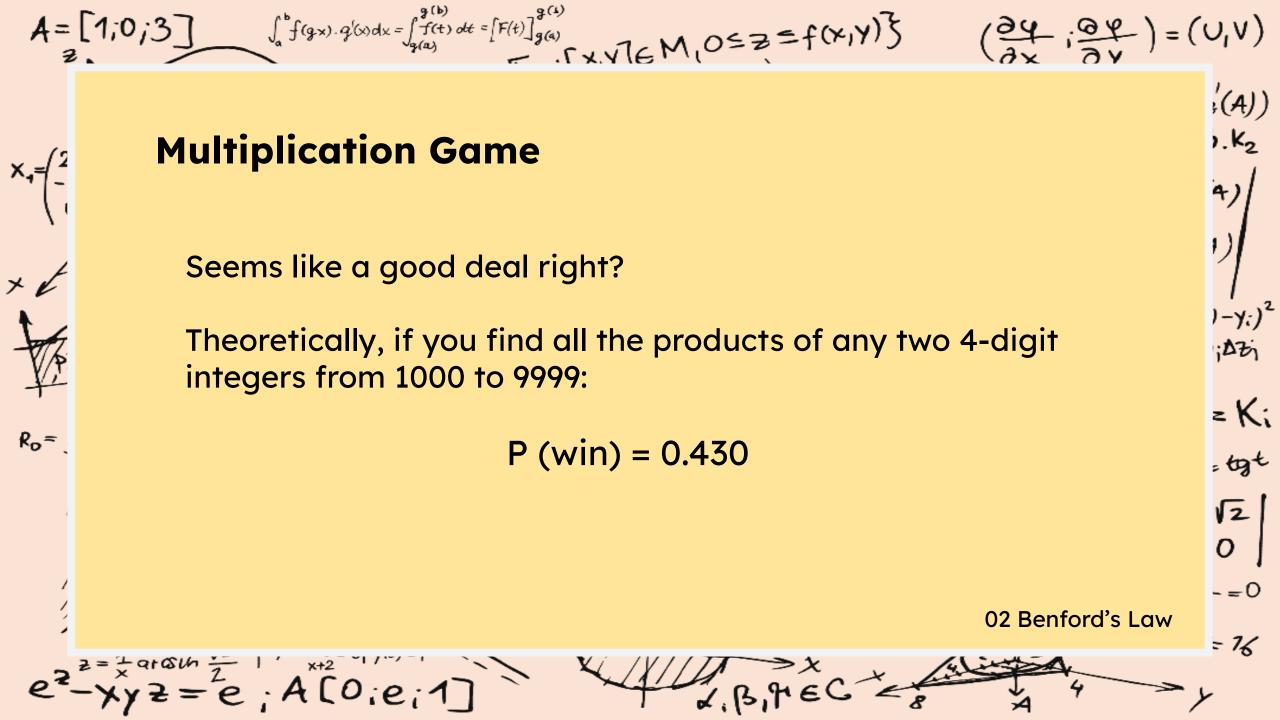
A=[1;0;3]

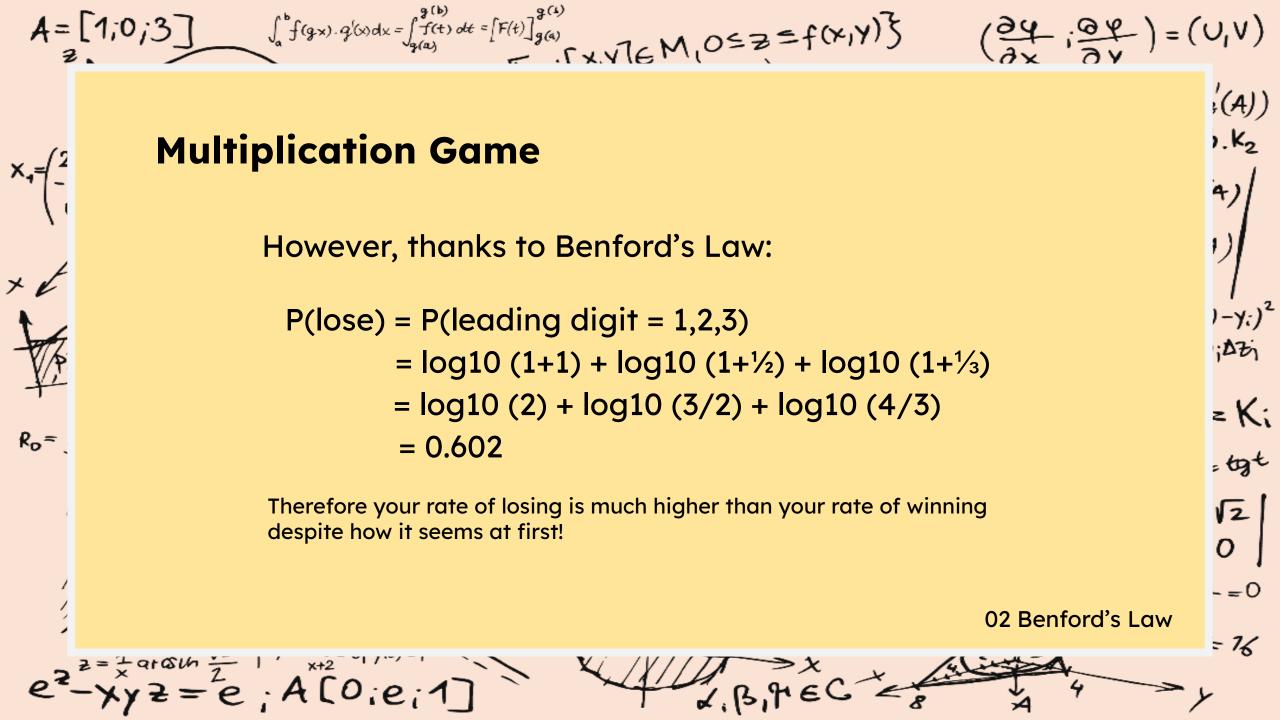
×,=/_

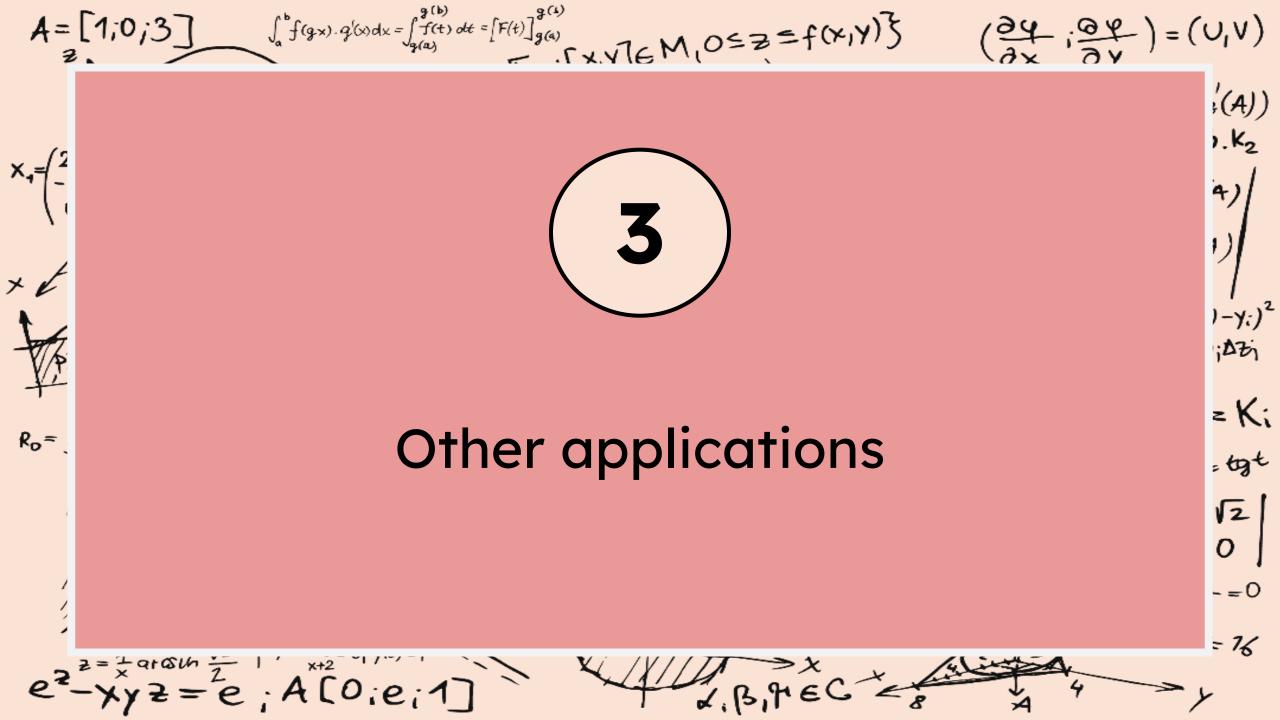
 $R_o =$

- 1. A game dealer generates a random four-digit positive integer, which you cannot see, from a slot machine.
- 2. At the same time, you write down a positive integer with as many digits as you like on a piece of paper.
- 3. The product of the two integers is then found.

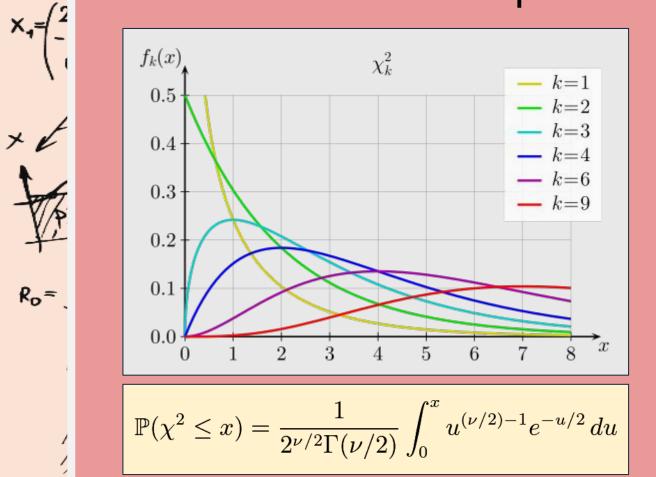








Chi-squared Distributions



e²-xyz=e;A[0:e:1]

Uses:

• Determine degree of **dependence** between various data

L.B.PEC -

- **Detect fraud** and fake experimental results
- Find suitable data models to **simulate** real-life events.

03 Other Applications

(A))

1.K2

4)

)-y;)²

jAZj

= Ki

= tgt

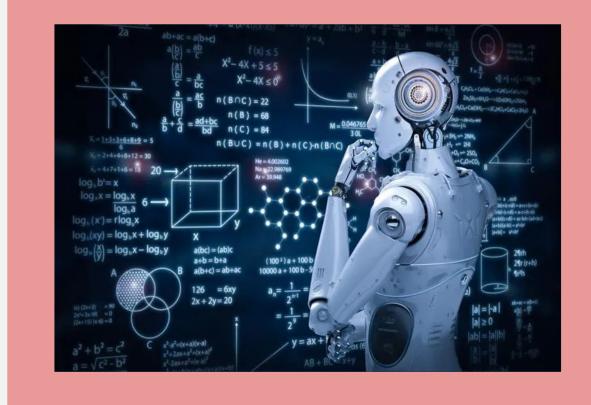
1Z

-=0

= 76

0

Machine Learning



e²-xyz=e;A[0:e:1]

×,=/

 $R_o =$

How is statistical knowledge applied?

• Anomaly detection

L,B,PEC

- **Bayesian inference** and conditional probabilities
- Hypothesis testing for comparison between different models
- Supervised learning with regression analysis

VZ 0

= 76

(A))

1.K2

4)

)-y;)²

iszi

= Ki

= tgt

03 Other Applications

