List of Definitions

Physics Form 4

Disclaimer: The terms marked with an asterisk (*) are provided definitions which are obtained from external sources (i.e. not textbook).

> Chapter 1: Measurement

	Basic terms		
1 Physics The study of matter and energy as well as phenomena		The study of matter and energy as well as phenomena	
		happening around us.	
2	Base quantity	A physical quantity which cannot be derived from another	
		physical quantity.	
3	Derived quantity	A physical quantity that is related to base quantities through a	
		formula.	
4	Scalar quantity	Physical quantity that has magnitude only.	
5	Vector quantity	Physical quantity that has both magnitude and direction.	

> Chapter 2: Force and Motion I

	Basic terms		
1	Linear motion	Motion in a straight line.	
2	Distance	Length of route covered by an object.	
3	Displacement	Shortest distance between the initial position and the final	
		position in a specific direction.	
4	Speed	Rate of change of distance travelled.	
5	Velocity	Rate of change of displacement.	
6	Acceleration	Rate of change of velocity.	
7	Free fall	The state of an object whereby the motion of the object is	
		affected only by gravitational force.	
8	Gravitational	The acceleration of a free-falling object caused by	
	acceleration	gravitational force.	
9	Inertia	The tendency of an object to remain at rest or, if moving, to	
		continue its motion in a straight line at uniform velocity.	
10	Momentum	Product of mass and velocity.	
11	Explosion	A situation where an object at rest breaks up into two or more	
		parts.	
12	Force	An influence that can change the motion of an object /	
		Product of mass and acceleration.	
13	Impulse	Change of momentum	
14	Impulsive force	The rate of change momentum in a collision	
15	Gravitational field	The force acting per unit mass caused by gravitational pull.	
	strength		
16	Weight*	Force acting on an object due to gravity.	

	Principles		
1	Newton's First Law of Motion	(Inertia) An object will remain at rest or move	
		at uniform velocity unless acted upon by an	
		external force.	
2	Newton's Second Law of Motion	(Force) The rate of change of momentum is	
		directly proportional to the force and acts in	
		the direction of the applied force.	
3	Newton's Third Law of Motion	(Action-reaction pair) For every action, there is	
		a reaction of equal magnitude, but in the	
		opposite direction.	
4	Principle of Conservation of	Total momentum of a system is conserved if	
	Momentum	there is no external force acting on the	
		system.	

> Chapter 3: Gravitation

	Basic terms		
1	Centripetal force	A force that acts on a body in a direction towards	
		the centre of the circle.	
2	Geostationary/geosynchronous	A satellite in geosynchronous orbit, with an orbital	
	satellite	period the same as the Earth's rotation period.	
3	Radius of orbit (of a planet)	The average value of the distance between a planet	
		(moving body) and the Sun (focus).	
4	Escape velocity	The minimum velocity needed by an object on the	
		surface of a planet to overcome the gravitational	
		force and escape to outer space.	

	Principles		
1	Newton's Universal Law of Gravitation	The gravitational force between two bodies is	
		directly proportional to the product of their	
		masses and inversely proportional to the	
		square of the distance between centres of the	
		two bodies.	
2	Kepler's First Law (Law of Orbits)	All planets move in elliptical orbits with the	
		Sun at one focus.	
3	Kepler's Second Law (Law of Areas)	A line that connects a planet to the Sun	
		sweeps out equal areas in equal intervals of	
		time.	
4	Kepler's Third Law (Law of Periods)	The square of the orbital period of any planet	
		is directly proportional to the radius of the	
		orbit.	

> Chapter 4: Heat

		Basic terms	
1	Thermal equilibrium	Both objects in thermal contact are in thermal	
		equilibrium when the net heat transfer between them is	
		zero.	
2	Heat capacity	The quantity of heat needed to raise the temperature of	
		the object by 1°C.	
3	Specific heat capacity	The quantity of heat needed to raise the temperature of	
		1 kg mass of a substance by 1°C.	
4	Latent heat	Heat that is absorbed during melting and boiling	
		without change in temperature.	
5	Specific latent heat	Quantity of heat that is absorbed or released during a	
		change of phase of 1 kg of a substance without any	
change in its temperature.		change in its temperature.	
	(a) Specific latent heat	The quantity of heat that is absorbed during melting or	
	of fusion, l_f	the quantity of heat released during freezing of 1 kg of	
		the substance without any change in temperature.	
	(b) Specific latent heat	The quantity of heat that is absorbed during boiling or	
	of vaporization, $l_{ m v}$ the quantity of heat released during condensation of		
		kg of the substance without any change in temperature.	

	Principles		
1	Boyle's Law	Pressure is inversely proportional to volume for a fixed mass of gas at constant temperature.	
2	Charles' Law	Volume is directly proportional to absolute temperature for a fixed mass of gas at constant pressure.	
3	Gay-Lussac's Law (Pressure Law)	Pressure is directly proportional to absolute temperature of a fixed mass of gas at constant volume.	
4	Avogadro's law*	At a constant temperature and pressure, the volume occupied by an ideal gas is directly proportional to the number of molecules of the gas present in the container.	

> Chapter 5: Waves

Basic terms		
1	1 Progressive wave A wave where the profile of the wave propagates with	
		time.

2 Stationary wave A wave where the profile of the wave does not propagate with time.		
3 Mechanical wave Wave that requires a medium to transfer energy f	rom	
one point to another.		
4 Electromagnetic wave Wave that does not require a medium to transfer		
energy.		
5 Transverse wave Particles of the medium vibrate in the direction		
perpendicular to the direction of propagation of t	he	
wave.		
6 Longitudinal wave Particles of the medium vibrate in the direction pa	arallel	
to the direction of propagation of the wave.		
7 Compressions Compressed regions in a wave profile.		
8 Rarefactions Stretched regions in a wave profile.		
9 Amplitude Maximum displacement of a particle from its		
equilibrium position.		
10 Period The time taken by a particle to make one complete	:e	
oscillation or by a source to produce one complet	e	
cycle of wave.		
11 Frequency Number of complete oscillations made by a partic	cle or	
number of cycles of wave produced by a source in	n one	
second.		
12 Wavelength Distance between two consecutive points in phase	9.	
	Distance travelled per second by a wave profile.	
14 Equilibrium position The original position of the particle before a syste	m	
oscillates.		
	Distance of a particle from the equilibrium position.	
16 Periodic force A force which acts at specific time intervals and no	ot	
continuously.		
17 Damping The reduction in amplitude in an oscillating system	n aue	
to loss of energy.		
External damping - Oscillating system loses ener	av to	
overcome friction or air resistance.	gy to	
overcome metion of all resistance.		
Internal damping - Oscillating system loses ener	av	
because of the stretching and compression of the		
vibrating particles in the system		
18 Forced oscillation Periodic external force is applied on an oscillating		
system to replace energy lost due to damping.		
19 Resonance The phenomenon whereby a periodic force is app	lied to	
an oscillating system at its natural frequency.		
20 Wavefront The line that joins the points in phase in a wave.		
21 Coherent sources Two sources of waves coherent when the frequen	cy of	
both waves is the same and the phase difference	is	
constant.		

22	Continuous	No specific boundary separates two adjacent types of
	(electromagnetic) spectrum	waves.
23	Monochromatic light*	Light with a single constant frequency.
24	Natural frequency*	The frequency of a system that oscialltes freely without
		external force.
25	(a) Constructive	Two crests or two troughs are in superposition that
	interference	produces maximum combined displacement.
	(b) Destructive	A crest and a trough are in superposition to produce
	interference	zero combined displacement.
26	Electromagnetic waves	A spectrum of waves that are made up of an electric
		field and a magnetic field that oscillates perpendicularly
		to one another.

	Principles		
1	Refraction of waves	The change in direction of propagation of	
		waves caused by the change in velocity of	
		waves when the waves propagate from one	
		medium to another.	
2	Diffraction of waves	The spreading of waves when the waves	
		propagate through a slit or side of a barrier.	
3	Principle of superposition	When two waves overlap, the resultant	
		displacement is the sum of the individual	
		displacements of the two waves.	
4	Interference of waves	The superposition of two or more waves from	
		a coherent source of waves.	

> Chapter 6: Light and Optics

	Basic terms		
1	Refractive index	The ratio of speed of light in vacuum to the speed of	
		light in medium.	
2	Critical angle	The angle of incidence in the medium of high optical	
		density when the angle of refraction in the medium of lower optical density is 90°.	
		' '	
3	Mirage*	A phenomenon in which light rays bend via refraction to	
		produce a displaced image of distant objects or the sky.	
4	Lens	A piece of transparent material which has two surfaces	
		with at least one surface curved.	
	Optical terms for lens		
1	Optical centre, O	Point at the centre of the lens.	
2	Principal axis	Straight line through the optical centre of a lens and	
		centre of curvature of both surfaces of the lens.	
3	Axis of lens	Straight line through the optical centre and	
		perpendicular to the principal axis.	

4	Object distance, u	Distance between object and optical centre of a lens.
5	Image distance, v	Distance between image and optical centre of a lens.
6	Focal length, f	Distance between focal point and optical centre of a
		lens.
7	Linear magnification, m	The ratio of image height to object height.
8	Power of lens / Optical	The reciprocal of focal length. / The degree to which a
	power*	lens, mirror or other optical system converges or
	Power	ions, minor or other option system converges or

	Optical terms for spherical mirrors		
1	Principal axis	Straight line passing through the centre of curvature	
		and pole of the spherical mirror.	
2	Centre of curvature, C	Centre of sphere which produces a concave or convex	
		mirror.	
3	Radius of curvature of	Distance between the pole of spherical mirror and the	
	mirror, r	centre of curvature.	
4	Object distance, u	Distance between object and optical centre of a mirror.	
5	Image distance, v	Distance between image and optical centre of a mirror.	
6	Focal length, f	Distance between focal point and optical centre of a	
		mirror.	

Physics Form 5

> Chapter 1: Force and Motion II

	Basic terms		
1	Resultant force	The single force that represents the vector sum of two	
		or more forces acting on an object.	
2	Free body diagram	A diagram that shows all the forces acting (on that	
	(of an object)	object) only.	
3	Resolution of forces	The process of resolving a force into two components.	
4	Forces in equilibrium	The state in which the forces acting on an object	
		produce a zero resultant force.	
5	Elasticity	The property of material that enables an object to	
		return to its original shape and size after force applied	
		on it is removed.	
6	Spring constant/Force	The ratio of the force applied to the extension or	
	constant, k	compression of a spring.	
7	Elastic limit	The maximum stress that can be developed within a	
		material without causing permanent deformation.	
8	Friction, R	The force resisting the relative motion of solid surfaces,	
		fluid layers and material elements sliding against each	
		other.	

Basic terms		
1	Hooke's law	The extension of a spring is directly proportional to the
		force applied on the spring provided the elastic limit of
		the spring is not exceeded.

➤ Chapter 2: Force and Motion I

	Basic terms		
1	Density, ρ	Mass per unit volume.	
2	Liquid pressure*	The pressure caused by the weight of the liquid.	
3	Atmospheric pressure, Patm	The pressure due to the weight of the layer of air acting	
		on the surface of the earth.	
4	Buoyant force, F _B	The force acting upwards on an object immersed in a	
		fluid when there is pressure difference between the	
		lower surface and upper surface of the object.	
5	Streamline*	A line along which the flow of a moving fluid is least	
		turbulent.	
6	Angle of attack*	The angle between a reference line on a body and the	
		vector representing the relative motion between the	
		body and the fluid through which it is moving.	

	Basic terms		
1	Pascal's principle	The pressure applied on an enclosed fluid is transmitted	
		uniformly in all direction in the fluid.	
2	Archimedes' principle	An object which is partially or fully immersed in a fluid	
		will experience a buoyant force equal to the weight of	
		fluid displaced.	
3	Bernoulli's principle	When the velocity of a fluid increases, the pressure in	
		the fluid decreases and vice versa.	

> Chapter 3: Electricity

	Basic terms		
1	Electric field	The region around a charged particle where any electric	
		charge in the region will experience an electric force.	
2	Electric field strength, E	The electric force acting on a unit positive charge	
		placed at the point.	
3	Electric current, I	The rate of flow of charge in a conductor	
4	Potential	The work done in moving one coulomb of charge from	
	difference/voltage, V	one point to another	
5	Ohmic conductor	A conductor which obeys Ohm's Law.	
6	Resistivity (of a conductor),	A measure of a conductor's ability to oppose the flow of	
	ρ	electric current.	

7	Non-conductor	A material that does not conduct electricity / good insulator.
8	Semiconductor	A material that conducts electricity better than an insulator but not as good as a conductor.
9	Conductor	A material that conducts electricity.
10	Superconductor	A material that conducts electricity without any resistance.
11	Critical temperature, T _c	The temperature when the resistivity of a superconductor becomes zero.
12	Electromotive force (e.m.f), $\mathcal E$	The energy transferred by an electrical source move one coulomb of charge in a complete circuit.
13	Voltage drop*	The decrease in electrical potential along the path of a current flowing in an electrical circuit.
14	Internal resistance, r	The resistance caused by electrolyte in the dry cell.
15	Electrical power, P*	The rate at which electrical energy is transferred by an electric circuit.
16	Resistance, R*	A measure of the opposition to current flow in an electric circuit / The ratio between potential difference and electric current.
17	6V, 12W	12 J of energy is produced in 1 second when being operated at 6 V.

Basic terms		
1	Ohm's law*	The current through a conductor between two points is
		directly proportional to the voltage across the two
		points.

> Chapter 4: Electromagnetism

	Basic terms		
1	Catapult field	A resultant magnetic field produced by the interaction	
		between the magnetic field from a current-carrying	
		conductor and the magnetic field from a permanent	
		field.	
2	Direct current*	Unidirectional flow of electric charge.	
3	Electromagnetic induction	The production of an induced e.m.f. in a conductor	
		where there is relative motion between the conductor	
		and a magnetic field or when the conductor is in a	
		changing magnetic field.	
4	Induced current*	The current generated in a wire due to a changing	
		magnetic field.	
5	Magnetic flux (through a	Magnetic field lines that pass through a surface. / The	
	surface)	surface integral of the normal component of the	
		magnetic field over that surface	

6	Ideal transformer	A transformer that does not experience any loss of
		energy, that is the efficiency is 100%.

	Basic terms	
1	Faraday's law	The magnitude of induced e.m.f. is directly proportional
		to the rate of cutting of magnetic flux.
2	Lenz's law	The induced current always flows in a direction that
		opposes the change of magnetic flux that causes it.

> Chapter 5: Electronics

	Basic terms		
1	Thermionic emission	The emission of free electrons from a heated metal	
		surface.	
2	Cathode rays	Beams of electrons moving at high speed in a vacuum.	
3	Semiconductor diode	An electronic component which allows electric current	
		to flow in one direction only.	
4	Rectification	The process of converting an alternating current into a	
		direct current.	
5	(a) Full-wave	A process where both halves of every cycle of	
	rectification	alternating current is made to flow in the same	
		direction.	
	(b) Half-wave	A process where one half of every cycle of alternating	
	rectification	current is made to flow in the same direction.	
6	Transistor*	A semiconductor device used to amplify or switch	
		electrical signals and power.	
7	Doping	A process of adding a small amount of impurities into	
		the semiconductor to increase the electrical	
		conductivity.	

> Chapter 6: Nuclear Physics

	Basic terms		
1	Radioactive	A process in which a unstable nucleus becomes more	
	decay/Radioactivity	stable by emitting radioactive radiation.	
2	Alpha particle (α)	A helium nucleus which consists of two protos and two	
		neutrons.	
3	Beta particle (β)	A fast-moving electron.	
4	Gamma decay	High-frequency electromagnetic wave.	
5	Half-life, T _{1/2}	The time taken for a sample of radioactive nuclei to	
		decay to half of its initial number.	
6	Isotope*	Atom of the same element that have the same number	
		of protons but different number of neutrons.	

7	Nuclide	A class of atoms characterized by their number of
		protons, number of neutrons and their nuclear energy
		state.
8	Radioisotope	Isotope with unstable nuclei that can emit radioactive
		radiation.
9	Nuclear energy	Atomic energy, released during nuclear reactions such
		as radioactive decay, nuclear fission and nuclear fusion.
10	Nuclear fission	A nuclear reaction when a heavy nucleus splits into two
		or more lighter nuclei while releasing a large amount of
		energy.
11	Nuclear fusion	A nuclear reaction in which small and light nuclei fuse to
		forma heavier.
12	Mass defect, m	Loss of mass due to radioactive decay.
13	Chain reaction*	A process in which neutrons released in fission produce
		an additional fission in at least one further nucleus.
14	Nucleon number*	The total number of protons and neutrons in an atom.

> Chapter 7: Quantum Physics

Basic terms		
1	Black body	An idealised body that is able to absorb all
		electromagnetic radiation that falls on it.
2	Thermal radiation	Electromagnetic radiation that includes visible light and
		radiation that cannot be seen by the human eye such as
		infrared radiation.
3	Quantum of energy	Discrete energy packet.
4	Photoelectric effect*	Emission of electrons when electromagnetic radiation
		(such as light) hits a material.
5	Threshold frequency, fo	The minimum frequency (for a light photon) required to
		produce photoelectric effect on a metal.
6	Modefunction	The paining up apareur required from a photoelectron to
ь	Work function	The minimum energy required from a photoelectron to
		be emitted from a metal surface.
7	Radiation*	The emission or transmission of energy in the form of
		waves or particles through space or through a material
		medium.
8	Photon*	Light energy exists in the form of an energy packet.

Principles		
1	Einstein's Photoelectric	If a photon's frequency is sufficient to knock off an
	Theory	electron, the collision will produce the photoelectric
		effect.
2	de Broglie's hypothesis of	All particles can exhibit wave properties.
	matter waves	