Population mean with known population variance |
$z$-test |
$\overline{x} \pm z_p\dfrac{\sigma}{\sqrt{n}}$ |
Population mean using large sample (unknown $\sigma^2$) |
$z$-test |
$\overline{x} \pm z_p\dfrac{s}{\sqrt{n}}$ |
Population mean using small sample (unknown $\sigma^2$) |
$t$-test |
$\overline{x} \pm t_{p, n-1}\dfrac{s}{\sqrt{n}}$ |
Population proportion, $\hat{p}$ (large sample) |
$z$-test |
$\hat{p} \pm z_p\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}$ |
Difference in population means using small sample |
$t$-test |
$(\overline{x}-\overline{y}) \pm t_{p, n_1+n_2-2}s_p\sqrt{\dfrac{1}{n_1}+\dfrac{1}{n_2}}$ |
Difference in population means using large sample |
$z$-test |
$(\overline{x}-\overline{y}) \pm t_{p, n_1+n_2-2}\sqrt{\dfrac{s_1^2}{n_1}+\dfrac{s_2^2}{n_2}}$ |
Difference in population means with matched pairs |
$t$-test |
$\overline{d} \pm t_{p, n-1}\dfrac{s_d}{\sqrt{n}}$ |