Vong Jun Yi

VOSOR around slant axis

In this post, we’ll be discussing the use of several methods to find the volume of solid of revolution (VOSOR) around slant axis (besides the xx-axis and yy-axis). A problem of this type is quite uncommon - for that reason, this post is written to shed light on this subject matter.

Method 1: Pappus’ Centroid Theorem

Theorem 1.1 The second part of Pappus’ Centroid Theorem states that

he volume VV of a solid of revolution generated by rotating a plane figure RR about an external axis is equal to the product of the area AA of RR and the distance dd traveled by the geometric centroid of FF.

V=AdV = Ad


Example 1.2 Find the volume of solid generated by revolving the region RR bound by the curves x=yx = \sqrt{-y} and y=x24xy = x^2 - 4x around the axis y=xy=x (see Figure 1).

Figure 1

Finding the value of ss should be a relatively straightforward task. The hard part, however, involves knowing what dd is. Since the solid is generated from a revolution around an axis, we know that d=2πrd = 2\pi r, where rr is the perpendicular distance between the centroid and the line y=xy=x.

Definition 1.3 Let (x,y)(\overline{x}, \overline{y}) be the coordinates of the centroid of the lamina.

By definition,

x=Mym\overline{x} = \dfrac{M_y}{m}

and

y=Mxm,\overline{y} = \dfrac{M_x}{m},

where mm denotes the mass of the lamina, MxM_x and MyM_y are the moments about the xx-axis and the yy-axis respectively.

Definition 1.4 Noting the density of a particular point (x,y)(x,y) on the lamina RR is given by ρ(x,y)\rho(x,y), we shall find the values of m,Mxm, M_x and MyM_y using the following formulae:

m=Rρ(x,y)dAm = \int \int_R \rho(x,y)\,dA Mx=Ryρ(x,y)dAM_x = \int \int_R y\rho(x,y)\,dA My=Rxρ(x,y)dAM_y = \int \int_R x\rho(x,y) dA

Since the density function ρ\rho is not given, we can assume that the lamina has uniform density and assign ρ(x,y)=1\rho(x,y) = 1.

m=Rρ(x,y)dA=x=0x=2y=x24xy=x2dydx=x=0x=24x2x2dx=[2x223x3x=0x=2]=83\begin{aligned} m &= \int \int_R \rho(x,y)\,dA \\ &= \int^{x=2}_{x=0}\int^{y=-x^2}_{y=x^2-4x}\,dy\,dx \\ &= \int^{x=2}_{x=0} 4x - 2x^2 \,dx \\ &= \left[\left.2x^2 - \frac{2}{3}x^3\right|^{x=2}_{x=0}\right] \\ &= \frac{8}{3} \end{aligned} Mx=Ryρ(x,y)dA=x=0x=2y=x24xy=x2ydydx=x=0x=2[y22y=x24xy=x2]dx=12028x316x2dx=163\begin{aligned} M_x &= \int \int_R y\rho(x,y)\,dA \\ &= \int^{x=2}_{x=0}\int^{y=-x^2}_{y=x^2-4x}y\,dy\,dx \\ &=\int_{x=0}^{x=2}\left[\left.\frac{y^2}{2}\right|^{y=-x^2}_{y=x^2-4x}\right] \, dx \\ &= \frac{1}{2}\int^2_0 8x^3 - 16x^2 \,dx \\ &= -\frac{16}{3} \\ \end{aligned} My=Rxρ(x,y)dA=x=0x=2xy=x24xy=x2dydx=x=0x=2x(4x2x2)dx=024x22x3dx=83\begin{aligned} M_y &= \int \int_R x\rho(x,y)\,dA \\ &= \int^{x=2}_{x=0}x\int^{y=-x^2}_{y=x^2-4x}\,dy\,dx \\ &=\int_{x=0}^{x=2}x(4x-2x^2) \, dx \\ &= \int^2_0 4x^2 - 2x^3 \,dx \\ &= \frac{8}{3}\\ \end{aligned}

Hence, x=8/38/3=1\overline{x} = \dfrac{8/3}{8/3} = 1 and y=16/38/3=2\overline{y} = \dfrac{-16/3}{8/3} = -2.

The distance of the (x,y)(\overline{x},\overline{y}) from the line y=xy=x is 1(2)12+(1)2=322.\dfrac{\mid 1-(-2) \mid}{\sqrt{1^2+(-1)^2}} = \dfrac{3\sqrt{2}}{2}.

Owing to the fact that the lamina has uniform density, the area of the lamina is equal to mm.

Finally, V=Ad=(83)(2π322)=8π2V = Ad = \left(\dfrac{8}{3}\right)\left(2\pi \cdot \dfrac{3\sqrt{2}}{2}\right) = \boxed{8\pi\sqrt{2}}

Method 2: Riemann Sum

Figure 2

This method uses the same concept involved in defining a Riemann integral (with nn partitions of width Δx\Delta x):

A=limΔx0i=0n1f(xi)Δx=abf(x)dx,A = \lim_{\Delta x \to 0}\sum_{i=0}^{n-1}f(x_i)\Delta x = \int_a^b f(x)\,dx,

where xi=a+iΔxx_i = a + i\Delta x and b=a+nΔxb = a + n\Delta x.

Referring to Figure 2, the area of the shaded region is A=limΔu0i=1nLiΔuA = \displaystyle \lim_{\Delta u \to 0}\sum_{i=1}^{n}L_i\Delta u.

Figure 3

By drawing out the sketch above (Figure 3), we get to deduce f(xi)=tanαf’(x_i) = \tan{\alpha} and m=tanβm = \tan{\beta}. Then, Di=ΔxcosαD_i = \dfrac{\Delta x}{\cos\alpha} and Δu=Dicos(βα)\Delta u = D_i\cos(\beta - \alpha).

From the equations above,

Δu=Δxcosαcos(βα)=Δxcosα(cosαcosβ+sinαsinβ)=Δx(cosβ+tanαsinβ)\Delta u = \dfrac{\Delta x}{\cos\alpha}\cos(\beta - \alpha) = \dfrac{\Delta x}{\cos\alpha}(\cos\alpha\cos\beta + \sin\alpha\sin\beta) = \Delta x (\cos\beta + \tan\alpha\sin\beta)

Then, we need to express sinβ\sin\beta and cosβ\cos\beta in terms of mm. By drawing a right triangle and using tanβ=m\tan \beta = m, it is easy to see that

sinβ=m1+m2andcosβ=11+m2\sin \beta = \frac{m}{\sqrt{1+m^2}} \qquad \text{and} \qquad \cos \beta = \frac{1}{\sqrt{1+m^2}}

Thus, Δu=Δx(1+mf(xi)1+m2)\displaystyle \Delta u = \Delta x \left( \frac{1+mf’(x_i)}{\sqrt{1+m^2}}\right).

Then, we shall determine LiL_i. From the sketch,

Li=(f(xi)(mxi+c))cosβ=f(xi)mxic1+m2L_i = (f(x_i) - (mx_i+c))\cos\beta = \frac{f(x_i) - mx_i-c}{\sqrt{1+m^2}}

Therefore, the area of region RR is

A=limΔu0i=1n(f(xi)mxic1+m2)Δx(1+mf(xi)1+m2)=11+m2limΔu0i=1n(f(xi)mxic)(1+mf(xi))ΔxA=11+m2ab(f(x)mxc)(1+mf(x))dx\begin{aligned} \displaystyle A &=\lim_{\Delta u \to 0}\sum_{i=1}^{n}\left(\frac{f(x_i) - mx_i-c}{\sqrt{1+m^2}}\right)\Delta x \left( \frac{1+mf'(x_i)}{\sqrt{1+m^2}}\right) \\ &= \frac{1}{1+m^2}\lim_{\Delta u \to 0}\sum_{i=1}^{n}(f(x_i) - mx_i-c)(1+mf'(x_i))\Delta x\\ \therefore A &= \frac{1}{1+m^2}\int_a^b (f(x) - mx-c)(1+mf'(x))\,dx \end{aligned}

Similarly, the volume of the solid generated by revolving RR about y=mx+by=mx+b can be obtained by the following:

V=limΔu0i=1nπLi2Δu=1(1+m2)3/2abπ(f(x)mxc)2(1+mf(x))dx\begin{aligned} V &= \lim_{\Delta u \to 0}\sum^n_{i=1}\pi L_i^2 \Delta u \\ &= \frac{1}{(1+m^2)^{3/2}}\int_a^b \pi(f(x) - mx-c)^2(1+mf'(x))\,dx \\ \end{aligned}

Using the formula above, we can quickly solve the following example.

Example 2.1 Find the volume of the solid generated by revolving the region RR bound by the curve y=x2y = x^2 and the line y=xy=x

For this problem, f(x)=x2    f(x)=2xf(x) = x^2 \implies f’(x) =2x and m=1,c=0m=1, c=0.

The points of intersection are (0,0)(0,0) and (1,1)(1,1).

V=1(1+12)3/201π(x2x)2(1+(1)(2x))dx=π22012x53x4+x2dx=π24[13x635x5+13x3]01=π260.\begin{aligned} V &= \frac{1}{(1+1^2)^{3/2}}\int^1_0 \pi(x^2-x)^2(1+(1)(2x)) \,dx \\ &= \frac{\pi}{2\sqrt{2}}\int^1_0 2x^5 -3x^4 + x^2\,dx \\ &= \frac{\pi\sqrt{2}}{4}\left[\frac{1}{3}x^6-\frac{3}{5}x^5+\frac{1}{3}x^3\right]^1_0 \\ &= \boxed{\frac{\pi\sqrt{2}}{60}}. \end{aligned}

Method 3: Rotating the graph about the origin

Example 3.1 Suppose we had to find the volume of the solid generated by revolving the region RR bound by y=x2y=x^2 and and y=xy=x.

While there are well-known methods to approach problems involving revolution about horizontal axes or vertical axes (e.g. Washer Method), it makes us wonder whether this notion can extended to any slant axes.

For that reason, why don’t we just rotate the entire Cartesian plane so that the slant axis (y=xy=x in our case) lies on the xx-axis or the yy-axis? (see Figure 4)

Figure 4

If we rotated y=x2y=x^2 90° counterclockwise, we’d get x=y2x = -y^2. If we rotated y=x2y=x^2 180° counterclockwise, we’d get y=x2y=-x^2. If we rotated y=x2y=x^2 270° counterclockwise, we’d get x=y2x=y^2.

How about 4545^{\circ}? Or even 6969^{\circ}?

We shall utilise one of two common ways to perform the rotation.

Polar coordinates

We shall use a parametric form to express xx and yy. x=rcosθandy=rsinθx = r\cos\theta \qquad \text{and} \qquad y = r\sin\theta After rotating the Cartesian plane by α\alpha radians counterclockwise, the new parametric forms are:

x=rcos(θα)andy=rsin(θα)x' = r\cos(\theta-\alpha) \qquad \text{and} \qquad y' = r\sin(\theta-\alpha)

When y=x2y=x^2 is expressed in the polar form, we obtain rsinθ=r2cos2θ    r=secθtanθr\sin\theta = r^2\cos^2\theta \iff r = \sec\theta \tan\theta.

If we were to map the line y=xy=x onto the xx-axis, this transformation would be equivalent to rotating the entire Cartesian plane by π/4\pi/4 clockwise (or π/4-\pi/4 counterclockwise).

x=rcos(θ+π4)=rcos(π4)cosθrsin(π4)sinθ=xy2x' = r\cos\left(\theta + \dfrac{\pi}{4}\right) = r\cos\left(\dfrac{\pi}{4}\right)\cos\theta - r\sin\left(\dfrac{\pi}{4}\right)\sin\theta = \dfrac{x-y}{\sqrt{2}} y=rsin(θ+π4)=rsin(π4)cosθ+rcos(π4)sinθ=x+y2y' = r\sin\left(\theta + \dfrac{\pi}{4}\right) = r\sin\left(\dfrac{\pi}{4}\right)\cos\theta + r\cos\left(\dfrac{\pi}{4}\right)\sin\theta = \dfrac{x+y}{\sqrt{2}}

After the rotation, y=(x)2y’= (x’)^2 becomes x+y2=(xy2)2\dfrac{x+y}{\sqrt{2}} = \left(\dfrac{x-y}{\sqrt{2}}\right)^2.

Transformation matrices

A more straightforward way of rotating graphs is none other than applying a rotation matrix to a set of coordinates.

Let x\bf{x} be the position vector of a point on y=x2y=x^2.

Let M:=[cosθsinθsinθcosθ]\bf{M} := \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} , which represents the rotation θ\theta radians counterclockwise.

A graph is transformed by the following equation when θ=π/4\theta = -\pi/4:

Mx=x[cosθsinθsinθcosθ][xy]=[xy][1/21/21/21/2][xy]=[xy]\begin{aligned} \bf{Mx} &= \bf{x'} \\ \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} x' \\ y'\end{bmatrix} \\ \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2}\end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} x' \\ y'\end{bmatrix} \end{aligned}

This gives us x=xy2x’ = \dfrac{x-y}{\sqrt{2}} and y=x+y2y’ = \dfrac{x+y}{\sqrt{2}}. Since y=(x)2y’=(x’)^2, then x+y2=(xy2)2\dfrac{x+y}{\sqrt{2}} = \left(\dfrac{x-y}{\sqrt{2}}\right)^2.

The new curve intercepts the xx-axis at x=0x=0 and x=2x=\sqrt{2}.

Since our desired volume is V=x=0x=2πy2dx\displaystyle V= \int^{x=\sqrt{2}}_{x=0}\pi y^2\,dx, we have to solve for yy.

x+y2=(xy2)2    y2(2x+2)y+x2x2=0\dfrac{x+y}{\sqrt{2}} = \left(\dfrac{x-y}{\sqrt{2}}\right)^2 \implies y^2 - (2x+\sqrt{2})y + x^2-x\sqrt{2}=0

Using the quadratic formula,

y=12(2x+22+8x2)y=\frac{1}{2}\left(2x+\sqrt{2}-\sqrt{2+8x\sqrt{2}}\right)

We’ve rejected the positive root since yy is always negative within our region RR. Then, squaring both sides and expanding yields

y2=14(4x2+12x2+44x2+8x224+16x2)y^2 = \frac{1}{4}\left(4x^2 + 12x\sqrt{2}+4 - 4x\sqrt{2+8x\sqrt{2}} - 2\sqrt{4+16x\sqrt{2}}\right)

Then, we define I1I_1 and I2I_2 as follows:

I1:=024x2+12x2+4dx=[43x3+6x22+4x]02=5632\begin{aligned} I_1 &:= \int^{\sqrt{2}}_0 4x^2 + 12x\sqrt{2} + 4 \,dx \\ &= \left[\frac{4}{3}x^3 + 6x^2\sqrt{2}+4x\right]^{\sqrt{2}}_0 \\ &= \frac{56}{3}\sqrt{2} \\ \end{aligned} I2:=024x2+8x2+24+16x2dxI_2 := \int^{\sqrt{2}}_0 4x\sqrt{2+8x\sqrt{2}} + 2\sqrt{4+16x\sqrt{2}}\, dx

Let u2=2+8x2    x=u2282    2udu=82dx    dx=u42duu^2 = 2+8x\sqrt{2} \iff x = \dfrac{u^2 - 2}{8\sqrt{2}} \implies 2u \, du = 8\sqrt{2} \, dx \iff dx = \dfrac{u}{4\sqrt{2}}du.

I2=232(4(u2282)u+2u2)u42du=232116u4+38u2du=[180u2+18u3]232=9352\begin{aligned} I_2 &= \int^{3\sqrt{2}}_{\sqrt{2}} \left(4\left(\frac{u^2 -2}{8\sqrt{2}}\right)u + 2u\sqrt{2}\right) \cdot \frac{u}{4\sqrt{2}}\,du \\ &= \int^{3\sqrt{2}}_{\sqrt{2}} \frac{1}{16}u^4 + \frac{3}{8}u^2 \, du \\ &= \left[\frac{1}{80}u^2 + \frac{1}{8}u^3\right]^{3\sqrt{2}}_{\sqrt{2}} \\ &= \frac{93}{5}\sqrt{2} \\ \end{aligned}

Our desired volume is V=x=0x=2πy2dx=π4(I1I2)=π4(56329352)=π260\displaystyle V= \int^{x=\sqrt{2}}_{x=0}\pi y^2\,dx = \frac{\pi}{4}(I_1 - I_2) = \frac{\pi}{4}\left(\frac{56}{3}\sqrt{2} - \frac{93}{5}\sqrt{2}\right) = \boxed{\frac{\pi\sqrt{2}}{60}}.